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Abstract during linear beam transport, after the beam is initiallg-ge
Usi lati t th thode to tail b erated. For an uncorrelated beam, they coincide with the
sing correlations at the cathode 1o tallor @ beam g, .00 heam emittances. If correlations are introduced when

elgen—em_lttances IS a recgnt (_:oncept made useful by t fe beam is generated at the cathode such that two of the
symplectic nature of Hamiltonian systems such as beal

. Lo . ; fyen-emittances are very small, it should be possible to
in accelerators. While introducing correlations does n 9 y b

. : move these correlations and recover the eigen-emittance
change the overall 6-dimensional phase space volume

ol . . X
_a§ the emittance values, provided nonlinear effects are not

can change the partitioning of this volume into the Iongl;[00 large.

tudinal and two transverse emittances, which become theseWe search for cases with two small eigen-emittances
eigen-emittances if "fl" t_he "““‘?" correlgtions are unmou when the minimum number of correlations that may pro-
and removed. In p_rlnC||_oIe, this techmq_ue can be used &Jce this case are present in the electron bunch. As this is
generate beams with highly asymme_trlc emittances, su e least complicated scenario to produce two small eigen-
as those needed for the_next generation of very h_ard X ittances, it will require the least optics to remove the
free-electron lasers. This approach is based on linear Crrelations from the beam. This report of our investiga-
relations, and its applicability will be limited by the magn tion is structured as foIIows'. Firstly, we outline the the-

tude of nonlinear effects in photoinjectors which will IeadOry required to study correlations and their resulting eige

to mixing in phase space that cannot l?e unwound dowr%- ittance values. This theory is then applied numerically
stream. Here, we review the eigen-emittance concept a O(T

i . : desian leadi hi investigate which combinations of correlations result i
preggnt adlneadr e|gen-em|tta|nceb(_es;]gn lea ng LO anNg¥o small eigen-emittance values. Finally, we discuss the
ggﬁ't:;gieh?lugz?;\sr; %;fst':(a;_e;gn:i’neeiﬂerzogvo?u“;ﬁﬁ Csfossibility_ of implementing these schemes to obtain trans-

' . . - ersely bright electron beams.
the eigen-emittances in realistic accelerator structanes

results indicating how much partitioning is practical. BACK GROUND THEORY

INTRODUCTION In this section, we outline the coordinate system used,
and briefly describe the eigen-emittance concept and how
X-ray free electron lasers (XFELS), such as Los Alamostorrelations can be treated theoretically.

Matter and Radiation in Extremes (MaRIE) project [1] re- We wish to make the two transverse emittances small
quire transversely bright electron beams. One approagl the expense of the longitudinal emittance, so we work
to achieving the necessary low emittance in a dimensionith the full 6-dimensional phase-space. We use canoni-
is via emittance partitioning, in which a large emittanceal coordinatess = (x, ps, y, py, 2z, p-), Wherep,, p, and
may be partially transferred to a different dimension, usp. are the canonically conjugate momenta to the configu-
ing appropriate optics. This has been demonstrated fation space coordinates, y andz, respectively. We use
the flat-beam transform [2, 3], which exchanges emitdimensionless coordinates which are the deviations from a
tance between transverse dimensions, and in tranverse4teference trajectory;, defined in the same manner as in
longitudinal emittance exchange [4]. The general case @farlsten et. al. [5], i.e.,
emittance exchange between any two dimensions is dis-

cussed by Carlsten et. al. [5]. (@ —z)/l > 2, (P2 = pat)/0 = pr,
Motivated by these ideas, we investigate making two (¥ — o)/l y, (Py = Pye) /0 = py, (1)
transverse emittances small at the expense of the longitu- (2 — 2z¢)/l — z, (P2 = p2t)/0 = p2,

dinal emittance, thus satisfying the emittance requirdmen,nare; ands are scaling factors for the position and mo-

for next generation XFELs. Our goal is use the €igeNyentym coordinates, respectively. We leave these scale
emittance concept [6] to achieve two very small emittancg, ;s undefined, as we are simply interested in how

values. The beam eigen-emittance values are conserygd gjgen-emittance values change as correlations are in-
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tldd@lanl.gov discussed in detail by Carlsten et. al. [5].




The Hamiltonian motion of a beam has three conserved Column Index

moments, which can be chosen as the quantities known Zo | Pz0 | Yo | Pyo | 20 | Pz0
as the eigen-emittances. These eigen-emittances coincide 112 ]3] 4156
with the beam emittances when no correlations are present. I 1
In practice, these quantities can simply be obtained from | 8 | p. | 2
the beam matrix as the absolute value of the eigenvalues, | £ | v | 3
Aj, of the characteristic equatiofigt(JYX — i\;I) = 0, 2lpy |4
where [ is the identity matrix and the only non-zero en- el =z |5
tries in the matrix,/, are the2 x 2 block diagonal entries Pz | 6

containing the skew-symmetric matrix,

0 1 Figure 1: Color chart of independent correlations leading
J2 = ( -1 0 ) (2) to two small eigen-emittances. Two entries in the C-matrix
) ) . need to be chosen, one from each block of the same color.
Both I and.J have the same dimensionality as the phasesjack entries are not considered, as they do not correlate
space. A more detailed discussion of eigen-emittancestigo of the three dimensions. The column indices corre-
provided by Dragt, Neri and Rangarajan [6]. spond to the initial coordinates of the uncorrelated beam

We use the same approach described in Yampolsky gfnd the row indices are the coordinates after the correla-
al. [7], extended to six dimensions. Correlations are Ntrqjgns have been introduced.

duced via a matrix of the form,

0 0 c3 cu as cie Mathematica and examine the resulting eigen-emittances.
0 0 co3 caa c25 cC2 For dependent correlations, the final C-matrix is calculate
c—| e 2 0 0 css oo (3) Using Eq. (5). The number of cases to be evaluated can be
car ocz 0 0 cus ca | reduced by recognizing symmetries in the problem, such as
cs1 Cs2 53 Csa O 0 the cyclic permutations of the coordinates. For numerical
c1 Co2 Co3 Coa O 0 purposes, we begin with initial beam emittances 0.7/047/1.

for thex/y/~ emittances, which are equivalent to the eigen-
emittances in the initially uncorrelated beam. When we
discuss specific correlations, the final variable in theeorr
lated beam is the first in the pair and the initial variabld tha
Y= (I4+C)S(I+0O). (4) introduces the correlation is the second, e.g. if onlgan
correlation is used, the functional dependencgis), yo).
As we wish to obtain two small eigen-emittances, a mini- \we nave found that it is possible to obtain two small
mum of two entries in the C-matrix will be required. Thesgsgen-emittances for all dependent correlations and for
two correlations must also couple all three (spatial) dimenpe combinations of independent correlations given by the

which we refer to as th€-matrix. Beginning with an ini-
tially uncorrelated beam, with beam matrix,, general
correlations between can be introduced using

sions. _ ) ) ) color chart of Fig. 1. The independent correlations which
Two |r_1d|V|duaI correlations in the C-matrix can be intro-jead to two small eigen-emittances are those in which the
duced via coordinates of the correlated beam involved in introduc-
S = (4O (I +C)So(I + C’l)T(I—i— 02)T ing the correlations are canonically conjugate. The way in

B T which the eigen-emittances vary with increasing correla-
= ([+0O)%(I+0) (®)  tions is illustrated in Fig. 2 for a case which leads to two

The order in which these are introduced may be importartma!l €igen-emittance values.

If C, andC, commute, then the correlations are indepen- e have found a number of cases that lead to our de-
dent and the order is not important. Ifd, andCs do 5|red_ r_eg._ult of tyvo small e_|gen-em|ttances._ We d|scu§s the
not commute, the order in which they are introduced detePOSsibilities of implementing these theoretical casesién t
mines whether they are dependent or independent. Whislowing section.

two correlations are independent, the C-matrix contains

two non-zero entries. When they are dependent, the num- DISCUSSION

ber of non-zero entries in the C-matrix is three. o )

approach in the following section. lead to two small eigen-emittance values, however, it is not
as simple to find a scheme that may be physically realized.
RESULTS While we can theoretically discuss correlations depending

on the beam momenta, no practical implementation cur-

We search for pairs of correlations that lead to two smaliently exists. Angular momentum, in the formpmf-y and
eigen-emittance values and one large. To do so, we npjz-x correlations, is simple to introduce to a beam using a
merically vary the appropriate entries in the C-matrix gsin solenoid providing magnetic field on the cathode, however



andy-z correlations.

A remaining question is whether a large enough corre-
lation can be achieved to produce a small enough eigen-
emittance value. Transverse emittances for the MaRIE
XFEL need to be 0.1%m or less, while a longitudinal
emittance of up to 18@m is acceptable [5]. Whether the
necessary eigen-emittance values can be achieved with ac-
ceptable correlations that do not lead to extreme aspect ra-

5 tios in the beam is yet to be investigated. Additionally, if
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these small eigen-emittance values can be achieved, it is

important that nonlinear effects are not large enough to sig
nificantly alter the eigen-emittance values.
Figure 2: z-y andp,-z correlations are an example of a We have identified cases with promise to lead to two
case resulting in two small and one large eigen-emittancemall eigen-emittance values using numerical tools. Fur-
The variation of eigen-emittance values with increasingher investigation into these cases is warranted, to make

correlation are shown here.

it is difficult to imagine a scheme in which one correlation
is introduced without the other and these two correlatiorid]
do not lead to two small eigen-emittances by themselves.
Initial investigation of combinations containing both skee
correlations and a third indicate that they do not lead to two
small eigen-emittances, and support the findings of Yam-
polsky et. al. [7] which studied these correlations combinel?]
with what is effectively az-2 correlation. Additionally, a
py-2 OF p,-z correlation would be difficult to create at the
cathode. (3]

Given the above, the only correlations that might be
physically realizable are the purple and green blocks of
Fig. 1. Ap.-x or p.-y correlation could be obtained by [4
scanning a drive laser with frequency modulation across a
photocathode or using a photocathode with work function
variation. This will also introduce-z or z-y correlations,
respectively, however an initial study of more than two cor-
relations shows that it is still possible to obtain two small®]
eigen-emittances with these correlations present. The re-
spectivez-y or z-z correlations that are needed to produce
two small eigen-emittances could be produced using a drive
laser with a tilted pulse front, as in the scheme described A
Yampolsky et. al. [7] or a photo-cathode recessed at an an-
gle with changing work function across the surface, such
as suggested in Carlsten et. al. [5]. [7

The above discussion shows that a minimal independent
correlation scenario is difficult to implement, but a possi-
bility is using p.-x/y with z-y/z correlations. This leaves
the possibility of the dependent correlations. We have not
investigated adding additional correlations to two indepe
dent correlations, so we limit the discussion to cases where
we only introduce two dependent correlations. Based on
the previous discussion, single correlations that we can re
sonably expect to introduce are correlations between the
coordinate variables ang correlations that depend on one
of the transverse coordinates. Of these, a number of com-
binations could be possible. One that may be simple to im-
plement could be a laser pulse with a phase-front tilt with
an elliptical cathode, giving-x andz-y correlations oe-y

sure they are able to be implemented practically.
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